Restricted spatial expression of a high-affinity phosphate transporter in potato roots.

نویسندگان

  • Ruth Gordon-Weeks
  • Yiping Tong
  • T G Emyr Davies
  • Georg Leggewie
چکیده

Phosphorus deficiency limits plant growth, and high-affinity phosphate transporters, of the Pht1 family, facilitate phosphate uptake and translocation. The family is subdivided into root specific, phosphate deprivation induced members and those also expressed in leaves. An antibody to StPT2, a potato root specific transporter, detected two bands (52 kDa and 30 kDa) on western blots of root plasma membrane extracts that were most intense in whole extracts from the root tip and slightly increased throughout the root in response to phosphate depletion. RT-PCR, using StPT2 specific primers, confirmed these findings. Low power confocal immunofluorescent images showed StPT2 expression mainly in the elongation zone at the root tip. By contrast, a vacuolar pyrophosphatase and a plasma membrane ATPase antibody labelled the whole root. High power images showed, by comparison with alpha-tubulin, cell wall and plasma membrane ATPase labelling, that StPT2 was in the epidermal plasma membrane and restricted to the apical surface. This is the first evidence of polar plasma membrane localisation of a plant nutrient transporter and is consistent with a role for StPT2 in phosphate capture and uptake.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean.

Legume biological nitrogen (N) fixation is the most important N source in agroecosystems, but it is also a process requiring a considerable amount of phosphorus (P). Therefore, developing legume varieties with effective N(2) fixation under P-limited conditions could have profound significance for improving agricultural sustainability. We show here that inoculation with effective rhizobial strai...

متن کامل

Phosphate utilization efficiency correlates with expression of low-affinity phosphate transporters and noncoding RNA, IPS1, in barley.

Genetic variation in phosphorus (P) efficiency exists among wheat (Triticum aestivum) and barley (Hordeum vulgare) genotypes, but the underlying mechanisms for the variation remain elusive. High- and low-affinity phosphate (Pi) PHT1 transporters play an indispensable role in P acquisition and remobilization. However, little is known about genetic variation in PHT1 gene expression and associatio...

متن کامل

Isolation and comparative analysis of the wheat TaPT2 promoter: identification in silico of new putative regulatory motifs conserved between monocots and dicots.

Phosphorus deficiency is one of the major nutrient stresses affecting plant growth. Plants respond to phosphate (Pi) deficiency through multiple strategies, including the synthesis of high-affinity Pi transporters. In this study, the expression pattern of one putative wheat high-affinity phosphate transporter, TaPT2, was examined in roots and leaves under Pi-deficient conditions. TaPT2 transcri...

متن کامل

Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus.

Phosphorus is a major nutrient acquired by roots via high-affinity inorganic phosphate (Pi) transporters. In this paper, we describe the tissue-specific regulation of tomato (Lycopersicon esculentum L.) Pi-transporter genes by Pi. The encoded peptides of the LePT1 and LePT2 genes belong to a family of 12 membrane-spanning domain proteins and show a high degree of sequence identity to known high...

متن کامل

The effect of salinity stress on Na+, K+ concentration, Na+/K+ ratio, electrolyte leakage and HKT expression profile in roots of Aeluropus littoralis

Among abiotic stresses, salinity has been increasing over the time for many reasons like using chemical fertilizers, global warming and rising sea levels. Under salinity stress, the loss of water availability, toxicity of Na+ and ion imbalance directly reduces carbon fixation and biomass production in plants. K+ is a major agent that can counteract Na+ stresses, thus the potential of plants to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 116 Pt 15  شماره 

صفحات  -

تاریخ انتشار 2003